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Abstract. Damage detection in a cantilever Euler-Bernoulli beam is investigated.  The
mathematical model for the system is obtained using the Finite Method and static
condensation.  In this paper, damage is considered a reduction in the stiffness of any particular
element of the model.  The detection scheme is based on establishing failure sets which predict
the natural frequency changes in the beam due to damage at a given element location.  These
failure sets are compared with the actual beam's response using an Euclidean norm.  The model
is restricted to a conservative system that is described by a positive definite matrix capable of
being transformed into a diagonal Jordan canonical form.  The restriction of the mathematical
model enables the formulation of a standard eigenvalue problem.  This representation has a
geometric interpretation of a n-dimensional ellipsoid that is a convex set.  An example of a
two-degree of freedom model is established to examine the effect damage has on the geometric
representation of the eigenvalue problem.  The geometric representation of the eigenvalue
problem of the damaged state is the convex hull of the beam's previous existing condition.
This leads to the mathematical validation of the above mentioned damage detection scheme.
Experimental verification is performed for several cases of the simplified model.  The results
show that the method is easy to use and does not require a rigorous amount of instrumentation
for obtaining the experimental data required by the damage detection scheme.
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1  . Introduction



 Damage can cause the properties of structures and their elements to undergo changes.
Serval researchers, have noted that damage which decreases the structural rigidity, tends to
decrease the natural frequencies of the structure,(  Adams R. D. et al. 1978, Bastadzhan A. Z.
et al. 1990 Dimarogonas A. S. et al. 1983 Rizos P.R. et al. 1990 Yuen M. F. 1985), , , and .
One of the first studies in vibration response measurement was performed by Adams et al.
1970.   Here the study consisted of measuring the longitudinal vibration response of various
structures and determining the change in the natural frequencies.  , studied theRizos et al 1990
vibration of a cantilever beam with a crack.  In their analysis the vibration response at two
arbitrary locations was measured along with the frequency of vibration.  These results  were
used to determine the crack depth and location  Many other methods have been performed in
damage detection and are too numerous to mention in this small introduction to the subject.
This paper will examine the effect of damage on the geometric interpretation of the eigenvalue
problem in an arbitrary two degree of freedom structure and verify the method with a simple
case.

2. Model: General Development and Form

 In vibration modeling, equations are usually obtained from discrete methods such as the
finite element analysis or lumped parameter models to name a few.  These models often consist
of a set of coupled ordinary differential equation which can be express in a general matrix form
given as:
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The generalized coordinates used to describe the motion is represented by the vector .  The$ %&
matrices and  are used to describe the mass, damping, and stiffness of the" # " # " #4 ¼ * ¼ 2

structure respectively.  The generalized forces acting on the structure, are described by the
vector .  These equations of motion can also be derived from the virtual work associated$ %�­!®

with nonconservative forces and two scalar functions, the kinetic energy and potential energy.
This discussion will be limited to natural conservative systems with proportional damping.  In
addition, Eq. (1), represents the linearized governing equations about an equilibrium point.

3. The Eigenvalue Problem

 The eigenvalues corresponding to the system of equations described by Eq. (1), may be
characterized by the properties of the mass, damping and stiffness matrices.   A common
method used to solve these equations is the method of modal analysis which requires the
solution of the eigenvalue problem for the system.  The eigenvalue problem is developed from
the homogeneous representation of Eq. (1) in which damping has been neglected.  This us
usually expressed in the form:
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The eigenvalue problem in this discussion will be given in a standard form representation as
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The property of symmetry, given in the matrices  and , is desired to be retained in the¯2° ¯4°
matrix .  In order to accomplish this, the particular linear transformation¯(°
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will be used.  Substitution into Eq. (2) assuming synchronous motion with an exponential¼

solution and performing the necessary algebra yields Eq. (3)  Matrix is defined by» ¯(°
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and  is used to represent the eigenvalue of the system Matrix  is a symmetric matrix� » ¯(°

whose form is defined from the pre and post multiplication of a symmetric positive definite
matrix, .  The properties of matrix being positive definite or positive semi definite is¯4 ° ¯(°

^

�

�

determined by matrix . The matrix , which is usually considered positive semi definite,¯2° ¯2°

is determined by the potential energy function,   Only a potential energy function derived= »

from elastic forces will be considered in this discussion.

3.1 Geometric Interpretation of the Eigenvalue Problem and Convexity

 In order to obtain an understanding of the geometric interpretation of the eigenvalue
problem, a brief review of quadric surfaces will be presented.  A quadric surface is defined as
the subset  in such that  is the set of zeros of the quadratic equation G- , - ­"¼ #¼$® y �»�

The variables and  represent a set of arbitrary rectangular coordinates located in "¼ #¼ $ , »�

The general equation for the quadric surface may be written as
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in which the coefficients �¼ �¼ �¼ �¼ � ¼ � ¼ � ¼ � ¼ � ¼ �Z Z Z ZZ ZZ ZZand  are real numbers.  When the quadric
surface is central, meaning it has a center, and if Eq. (4) contains no linear terms, the surface
can be represented by the following form
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If the matrix is positive definite and a suitable rectangular coordinate system, ( , , ), is usedK L M

to describe the surface, Eq. (5) can be expressed as

K L M
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in which  and  are constants.  Equation (6) describes an ellipsoid with a rectangular7 8 9¼ ¼

coordinate system located at its center.  For a 2-dimensional Euclidian space, Eq. (6) reduces
to an ellipse.
 Quadric surfaces may be extended to a -dimensional Euclidean space, , without� ,�

loss of generality.  The equations which were used to describe the ellipsoidal surface now
contain  terms.  A quadratic surface in E possessing the requirements for an ellipsoid� �

description (no linear terms and a real symmetric positive definite matrix representation) is
referred to as an elliptic quadratic hypersurface.  The significance of this is that an � _ �

matrix equation,  can be used to represent this particular hypersurface.� } �¼

 The eigenvalue problem of a natural conservative system is a central quadric
hypersurface which has the property of convexity.  A region is said to be convex if a line
segment joining any two points in the region is located entirely within the region.  Consider the
two distinct regions which are represented by the closed sets shown in Fig. 1.  The geometric



property of convexity is easily viewed in Figure 1(a).  As long as the points  and  are with in� �

the region, the line segment  will be in the region.  However, this is not the case for the non��

convex region shown in Figure 1(b).  Even though the points  are contained in the region,� �Z Z

part of the line segment  is located outside the set.� �Z Z
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Figure 1:  Two regions containing line segments in a 2-dimensional Euclidean space.

 In a -dimensional Euclidean space, as shown in Fig. 1, the convexity of a set can easily�

be determined.  When sets become more complex and are harder to visualize, an algebraic
formulation is required and may be given as
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 This algebraic definition can be used for -dimensional regions and is equivalent to the�

geometric presentation which has been given.  Convex sets are usually described by the convex
hull of the set which is by definition the intersection of all convex sets containing the region
described by the set.  Another way to interpret this definition is to say that a convex hull is the
smallest convex set describing the region.  By using the definition of a convex set and convex
hull, the convexity of the geometric interpretation of the eigenvalue problem can be shown to
be Just (1997)
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The geometric interpretation of the eigenvalue problem, an elliptic quadric hypersurface, is
always a convex set in any -dimensional Euclidean space.�

4. An Arbitrary Two-Degree of Freedom System

 An arbitrary lumped mass two degree of freedom system, shown in Fig. 2, will be
examined in terms of its convexity.
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Figure 2: A Lumped Mass Two Degree of Freedom System.

The displacements  and  describe the motions of the lumped masses  and % % � �� �2 1

respectively.  The stiffness of this system is represented by the linear springs  and The� � »� �

potential energy function ,  is given by= ¼
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and the equilibrium point is given by 0 and . The linearized equations of motion% y % y �� �

about the equilibrium point yields
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The solution of this equation requires the construction of the eigenvalue problem which can be
expressed in a standard form as
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As discussed before, the geometric interpretation of this problem is equivalent to finding the
principal axes of an ellipse.  The equation for this curve can be given by
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Damage, which is considered a reduction of the stiffness in the first and/or second  element,
can be represented by the parameters  and  respectively.  Equations (8) and (9) can be� �

transformed repectively to
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and
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in which the terms and  are defined by and  .� ¼ � ¼ � � y ½ � y ¼ � y�� �� �� �� ��
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 Equation (10) defines an ellipse whose coefficients contain the parameters used to
describe damage.  The effect of the various possible damage scenarios, can be simulated by
substituting different values for  and  into Eq. (10).  Each scenario will correspond to a� �

particular ellipse.  As the various damage scenarios are studied, the domain described by the



boundary of the ellipse changes.  The behavior of these ellipses can be studied by using two
forms of Eq. (10).  One form will correspond to the case in which no damage has occurred in
the system ( .  The other will represent the system with any arbitrary state of� �y �¼ y �®

damage.  These conditions are represented by
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 A damage detection scheme can be established if the effect of damage on the ellipse
produces a convex hull of the apriori condition.  This will occur when the boundaries defining
the convex sets are tangent or never intersect each other.  The apriori condition and the
condition corresponding to the damaged system are defined by Eqs. (12) and (13) respectively.
 For an intersection to exist, points from both curves must simultaneously satisfy Eqs.
(12) and (13).  From Eq. (13), the variable  can be expressed as a function of the variable"�
" »�
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Substitution of Eq. (14) into Eq. (12) and solving for the variable , yields:"�
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 The ellipses intersect when  and  are members of the set of real numbers.  The" "� 2

coordinate  is a real number when the following conditions are satisfied: " � | | �¼� �

� { �¼ { » � »�� ��and The first two prerequisites are fulfilled by the definitions of and In� � �

order to determine what is occurring with the coordinate  the restriction  is assumed." ¼ {� � �

Two terms in Eq. (14) determine if  is a real number.  These terms are given by"�
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When  is a real number, the expression under the radical must always be greater than or"�

equal to zero.  Substitution of Eq. (15) into Expression (17) and performing some algebra
yields
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Equation (18) can be transformed by substituting the definitions of and  to an� ¼ � ¼ ��� �� ��

expression with of a single damage parameter as
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Because  is defined only for the range of Eq. ( ) is only satisfied for the case of� �� | | �¼ �


� y � ".  When this occurs the expression under the radical is zero and  will depend only�

upon the value of   This restriction, produces two solutions that satisfy the condition" »�
required for the intersection of the ellipses. A similar situation occurs when .� y �

 When the restriction of  is not satisfied two boundaries corresponding to an� �{

undamaged and damaged state never intersect.  If the restriction is enforced, the curves are
tangent to each other only for two particular cases,  or .  These points of tangency� �y � y �

are in turn defined by equations that are independent of the damage parameters.  The damage
state is the convex hull of the undamaged state.  This will always be true for any two degree of
freedom system model represented by Fig  .  Because of this fact, the natural frequencies of» �

the structures can be used to represent each particular ellipse.
4.1 Example

 This example will refer to the system represented in Fig  2.  The values of the first and»

second mass,  and are assumed to be 1 and 4 kilograms respectively.  The springs  will� � ¼� �

have the following initial values of  and .  Two damage scenarios will be� y � � y �� �
N N
m m

investigated.  These will correspond to  a reduction in the stiffness of  and , by 25% and� �� �

50%.  Substitution into Eq. (11) establishes an equation which may be used to represent
various ellipses which are shown in Fig 3.

 !� ] � " ^ � " " ] �»	 " y �» ­� ®� � �
� �

� �
� � 0

u 1

- 1 0 1

u 2

- 3

- 2

- 1

0

1

2

3

0 %  d a m a g e  k 1

0 %  d a m a g e  k 2

5 0 %  d a m a g e  k 1

5 0 %  d a m a g e  k 2

2 5 %  d a m a g e  k 1

2 5 %  d a m a g e  k 2

Figure 3:  Geometric Interpretation of the Eigenvalue Problem given in Example
            No. III.

By examining Fig. 3, it can easily be seen that damage occurring in the structure is the convex
hull of the condition existing before.  It should also be noted that each ellipse in Fig. 3 is
unique and represents a particular condition of the system.

5. Experimental Verification

  An experimental set up consisting of a 6 ft. aluminum beam mounted on top of a VTS
VG100-B shaker powered by an Techron 5507 power supply amplifer was used to model a



cantilever beam.  The beam was mounted with an adhesive to a Kristler 8638B5 accelerometer
connected to the shaker.  Two Bruel & Kjaer 8309 accelerometers were placed six inches
away from the ends of the beam.  The signal conditioning was performed with a Kristler
5118A2 power supply coupler and an B&K 2635 Charge type amplifer.  These signals were
read with an HP A35660  dynamic signal analyzer to produce the frequency response function
of the structure.  The dynamic signal analyzer produced a random signal which was sent to the
power supply amplifer to excite the structure.  This experimental set up is shown in Fig. 4.

signal to B&K
Charge Amplifier

accelerometer beam

shaker and
amplifier

accelerometer hp dynamic signal analyzer

 Figure 4:  The Cantilever Mounting System used in the Experiment

 Damage scenarios were simulated using a two beam finite element model.  The results
were placed into a spread sheet. Because each eigenvalue problem representation is unique, a
norm using the natural frequencies was used to determine the damage location.  The beam was
damaged at a location of four inches from the cantilever with a slot depth of twenty percent of
the beam's height.  The structure was then vibrated and the first two natural frequencies were
recorded.  The beam was removed and another damage state was placed at a new location.
This new slot was located sixteen inches from the cantilever end and had a corresponding
depth of ten percent.  Vibration was repeated and the first two natural frequencies were taken.
Damage was augmented at the sixteen inch location to a new slot depth of twenty percent.
The vibration experiment was then performed one more time.  Figure 5 shows the frequency
response function for one of the above mentioned beam conditions and Table 1 shows a typical
spread sheet result.



Figure 5: The Frequency Response of a Damaged Cantilever Beam  Around the First
            Natural frequency. ( 20% damage, 4 inches from cantilever)

Table 1: Spread Sheet Results for Damage Located 4 Inches from the Cantilever:
 Damage 20% Deep; Location 4 inches; No Damage in Element II (Reponse in Hz)

Damage in Element No. I
0% 10% 20% 30% 35% 40% Actual Response 

1  natural frequency 26.89 25.57 24.17 22.66 21.86 21.03 23.75
2 natural frequency 170.08 165.17 159.57 153.17 149.58 145.68 151
norm 19.3

st

nd

3 14.28 8.58 2.43 2.36 5.98

Damage 20% Deep; Location 4 inches; No Damage in Element I (Reponse in Hz)
Damage in Element No. II

0% 10% 20% 30% 35% 40% Actual Response
1  natural frequency 26.89 26.82 26.73 26.61 26.54 26.46 23.75
2 natural frequency 170.08 165.93 161.17 155.64 152.

st

nd 53 149.15 151
norm 19.33 15.24 10.60 5.45 3.18 3.28

5.1 Discussion of the Results

 The geometric interpretation of the egienvalue problem is a convex set.  Damage has
the effect of producing a new convex hull of the exsiting mathematical model. This property
lets the damage detection method be based upon the closest response of a mathematical model
to the actual response of the structure.  The example and experimental verification was limited
to a very simple model with few possible damage senarios.  Even though noise and
experimental error were not considered in the analysis, the method performed adequately.  The
method predicted correctly the damage location (either on the left side or the right side of the
beam) for the three cases studied.  It should be noted that even though the method performed
adequatly, its accuracy is dependant upon the model used.

6. Conclusions

 Many damage detection schemes use modal parameters such as natural frequency and
mode shapes to determine changes in structures.  However, none have examined the changes in
the geometric representation of the eigenvalue problem which is used in many of the above
mentioned schemes.  The above examples developed a model for an arbitrary two degree of
freedom system shown in Fig. 2.  The geometric interpretation of the eigenvalue problem was
shown to be a convex set.  As damage occurred in the structure, the new geometric
interpretation becomes the convex hull of the previous convex set.  These results reveal some
very important properties about damage detection schemes.  One obvious fact is that every
new damage scenario will produce unique results in the natural frequencies and in the
eigenvectors.  This means of examination on how damage effects the parameter changes can
reveal a qualitative insight on any detection scheme proposed.  Future work in examining the
geometric interpretation  other solution schemes in engineering might reveal their behavior to
parameter changes.
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